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In this paper the possibility of obtaining accurate estimates of
parameters of selected peaks in the presence of unknown or uninter-
esting spectral features in biomedical magnetic resonance spectros-
copy (MRS) signals is investigated. This problem is denoted by fre-
quency-selective parameter estimation. A new time-domain
technique based on maximum-phase finite impulse response (FIR)
filters is presented. The proposed method is compared to a number of
existing approaches: the application of a weighting function in the
time domain, frequency domain fitting using a polynomial baseline,
and the time-domain HSVD filter method. The ease of use and low
computational complexity of the FIR filter method make it an at-
tractive approach for frequency-selective parameter estimation. The
methods are validated using simulations of relevant 13C and 31P MRS
xamples. © 2000 Academic Press

Key Words: MRS; frequency-selective quantification; FIR filter;
AMARES; NLLS.

INTRODUCTION

Accurate and efficient quantification of magnetic reson
spectroscopy (MRS) signals is the essential step prior t
conversion of the estimated signal parameters into bioche
quantities (e.g., concentration, pH). The quantification of
signal can be done directly in the measurement doma
alternatively in the frequency domain after transformation
the discrete Fourier transform (DFT).

The time-domain function often used to model theN mea-
sured data points is the following sum of exponentially dam
complex sinusoids (Lorentzians):

y~n! 5 ŷ~n! 1 w~n! 5 O
k51

K

ake
jwke~2ak1j2pfk!nDt 1 w~n!

n 5 0, . . . , N 2 1, [1]

where j 5 =21, ak is the amplitude,w k the phase,a k the
damping, andf k the frequency of thekth sinusoid (k 5 1, . . . ,

); Dt the sampling interval, andw is circular complex whit
1
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aussian noise. The caret on they indicates that this quanti
represents the model function rather than the actual mea
ments. The time-domain estimation methods can be div
into two classes. On the one hand, there are the so-c
black-box methods (examples can be found in (1–4)). Minimal
user interaction and limited incorporation of prior knowle
are inherent to this type of methods. Recent variants have
proposed in which some forms of prior knowledge can
imposed (5–7). On the other hand, interactive methods e
that are iterative, require user involvement, and allow inclu
of prior knowledge. These algorithms minimize the differe
between the data and the nonlinear model function:

min
ak,wk,ak,fk

O
n50

N21

uy~n! 2 ŷ~n!u 2. [2]

This nonlinear least-squares (NLLS) approach leads to m
mum likelihood parameter estimates if the underlying assu
tions concerning the model function and noise distribution
satisfied. VARPRO (8) and the more recent AMARES (9) are
examples of this type of methods.

The frequency-domain methods can also be divided into
classes. Thenonparametricfrequency-domain methods are ba
on integration of the peak area of the frequency-domain s
(10). The advantage of these methods is that no assumption
to be made concerning the signal, but the accuracy of the in
tion-based methods requires appropriate phasing (which
from trivial) and is dependent on the definition of the integra
area, especially in those cases where the peaks are no
separated, when missing time-domain data or acquisition art
or when unidentified broad resonances distort the frequ
domain baseline. More advancedparametric frequency-domai
methods have been presented that rely on a model function
metabolite peaks (see, e.g., (11–13)). The methods are often bas
on the time-domain model given in Eq. [1]. The model is tr
formed into a frequency-domain model by the DFT resultin
the expression
1090-7807/00 $35.00
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^$ ŷ~n!% 5 Ŷ~n l! 5 O
k51

K

ake
jwk

1 2 e~2ak1j2p~ fk2n l!! NDt

1 2 e~2ak1j2p~ fk2n l!!Dt

n l 5 l /~NDt!, l 5 0, . . . , N 2 1. [3]

o obtain the parameters, the difference between the DF
he data and the frequency-domain model function is m
ized:

min
ak,wk,ak,fk

O
l50

N21

uY~n l! 2 Ŷ~n l!u 2. [4]

The solution of this NLLS problem is the same as the
obtained by minimizing Eq. [2] directly in the time domain
a model other than the Lorentzian one is used (e.g., Gau
Voigt), a simple exact analytical expression for the DFT of
a model function is not available (14). It is, however, alway
possible to numerically compute the model function in
frequency domain by taking the DFT of the model functio
the time domain (15).

If the spectrum contains clusters of peaks of which littl
known and of which no model function is available, param
estimation becomes difficult. These nuisance signals ha
the accurate quantification of the peaks of interest. B
underlying components are usually dealt with by deleting
first data points. Peaks having approximately the same d
ing as the peaks of interest have to be treated differently. In
paper we focus on the quantification of a few selected pea
the spectrum in the presence of other peaks, whose influ
cannot be reduced by deleting a few data points. The iss
denoted by frequency-selective (FS) parameter estimati
the following paragraphs.

The problem has been studied previously and some me
that can be used in combination with black-box time-dom
methods have been proposed in the literature (16, 17). How-
ever, sincein vivo MRS signals are characterized by a
signal-to-noise ratio (SNR), prior knowledge often needs t
imposed to obtain relevant parameter estimates. Ther
time-domain (or frequency-domain) methods based on m
function fitting will be considered here. A limited number
results obtained in this field can be found in the literature.
example is (18) where a time-domain weighting in combin
tion with VARPRO was proposed to minimize the influenc
nuisance peaks on parameter estimates of peaks that ar
tively well separated from the nuisance peaks. Recent
simple preprocessing method, ER filter (19), has been pro
posed. Although this technique inherently distorts the sign
can be used in cases where the spectral region of inter
small compared to the full spectral width and the numbe
data points is large. Other examples can be found in me
that have been applied to a special case of FS estimation
solvent suppression in1H MRS. In this well-studied field
of
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number of preprocessing techniques have been presente
can be applied to remove the influence of nuisance peaks
to a model-fitting procedure. The HSVD filter method (20) is
an example of such a technique that can be used to est
reconstruct, and finally subtract the signal part correspon
to the nuisance peaks from the original signal. Other exam
based on different filtering (convolution) techniques are g
in Refs. (21–23). In Ref. (24) a powerful technique based
the use of a maximum-phase finite impulse response
filter followed by fitting an adapted time-domain model fu
tion to the metabolites of interest was proposed to suppre
water peak. FS parameter estimation is usually consider
be very easy in the frequency domain. Indeed, fitting
frequency-domain model function in a well-defined freque
region is straightforward to implement. The situation is, h
ever, complicated by the fact that the “tails” of the nuisa
peaks overlap with the frequency region of interest. Th
usually handled by modeling the nuisance peaks in the
quency region of interest as an additional baseline by s
choice of basis functions (e.g., polynomials, sinusoids, dam
sinusoids) (12, 15, 25).

In this paper the FIR filter method presented in (24) is
dapted for general use in FS parameter estimation.
ethod is compared to time-domain weighting, HSVD pre

essing, and frequency domain fitting using a polynomial b
ine. The paper is organized as follows: In the next section
S quantification methods under investigation are prese
he following section contains an exhaustive numerical e
ation of the presented methods. This is partly done
imple simulation example but also by applying the metho
wo relevant biomedical MRS scenarios. Finally, in the
ection, the main conclusions are formulated.

FREQUENCY-SELECTIVE QUANTIFICATION METHODS

In this section four methods that can be used for FS pa
eter estimation are described. All methods are based on m
fitting by the NLLS solver used in AMARES (9). The Jacobia
and function values are calculated analytically for all meth
taking the imposed prior knowledge and preprocessing
into account. Three methods are used in combination
time-domain parameter estimation: FIR filtering (convoluti
time-domain weighting, and HSVD filtering. A detailed d
cussion covers the adaptation of the FIR filter method
sented in (24) for FS parameter estimation. Finally, a f
quency-domain model-fitting method based on minimizin
certain frequency intervals the difference between the
transformed data and the model function of Eq. [3] (wit
polynomial baseline added to the model) is described.

Note that AMARESw and AMARESH, which are describe
below, are implemented within the software package M
(26, 27), a graphical user interface for facilitating the use
sophisticated analysis routines for MRS data quantificatio
biomedical/biochemical laboratories and the clinical envi
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3QUANTIFICATION OF BIOMEDICAL MR SPECTROSCOPY DATA
ment. The newly developed method AMARESf will be incor-
orated in a future release of the MRUI package.

IR Filter Method: AMARESf

Basic theory of the method.An FIR filter is defined by th
convolution sum

yf ~n! 5 O
m50

M21

hmy~n 2 m! n 5 0, . . . , N 2 1, [5]

where {hm} m50, . . . ,M21, are the constant (possibly compl
filter coefficients (see, e.g., (29)). To obtain the first (M 2 1)
samples ofyf (n) it is usually assumed that the signal
zero outside the time window or cyclic. Either of these
sumptions leads to distortions in the first (M 2 1) samples o
yf (n), which therefore have to be discarded resulting in
signal

yf ~n! 5 O
m50

M21

hmy~n 2 m 1 M 2 1!,

n 5 0, . . . , N 2 M. [6]

The samples which are discarded should contain as little s
information as possible. For a decaying signal this ca
achieved as follows. One of the important effects of appl
the FIR filter defined in Eq. [5] is to delay the time-dom
signal. This delay, which is a function of the frequency
specified by the group delay of the filter. Therefore, by usi
filter with a group delay equal to the filter length, practically
information contained in the first high-energy samples of
original signal is lost by deleting the first (M 2 1) samples o
yf. Assuming that the data have been collected long en
such that the (M 2 1) last signal samples contain mainly no
here is practically no loss of signal energy due to the fact
hese samples are shifted out of the time window. A filter
group delay equal to the filter length is in general not ex

ealizable, but for a given magnitude response of a filt
aximum-phase filter has the largest possible group d

28).
Such an FIR filter can be used as follows to eliminate p

n certain frequency regions. The influence of applying a fi
n the exponentially damped sinusoids can be examine
pplying Eq. [6] to the signal model of Eq. [1]:

ŷf ~n! 5 O
m50

M21

hm~ x1~n 2 m 1 M 2 1!

1 x2~n 2 m 1 M 2 1!

1 · · ·1 xK~n 2 m 1 M 2 1!)
-
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5 h# b1x1~n! 1 h# b2x2~n! 1 · · ·1 h# bKxK~n!

5 O
k51

K

h# bkxk~n! n 5 0, . . . , N 2 M, [7]

where

xk~n! 5 ake
jwke~2ak1j2pfk!nDt k 5 1, . . . , K

enote the individual, exponentially damped complex s
oids,

h# 5
D

~hM21 · · ·h0!

and

bk 5
D

~1 e~2ak1j2pfk!Dt · · ·e~2ak1j2pfk!~M21!Dt! T.

The superscript T denotes the transpose. From Eq. [7] it is
that the filtered NMR signal consists of the original dam
sinusoids (same frequency and damping) altered by a com
scalarh# bk. The filter can thereby be designed to suppres
nuisance peaks (i.e., makeuh# bku ' 0) including their fre

uency-domain tails (see, e.g., (24, 30)) while leaving the
peaks of interest practically undistorted (i.e., makeuh# bku ' 1).
Signals not exactly obeying the Lorentzian model are
efficiently removed if they can be approximated by a sum
(damped) complex sinusoids with a frequency located in
stop band of the filter.

If the model function of Eq. [1] is fitted to the filtered sign
the estimated amplitudeãk and phasew̃ k must be corrected
follows:

ak 5
ãk

uh# bku

wk 5 w̃k 2 tan21S imag~h# bk!

real~h# bk!
D , [8]

where real(.) and imag(.) denote the real and imaginary p
(.), respectively. If, however, prior knowledge concerning
amplitudes and/or phases is to be imposed, the filter influ
must be taken into account directly in the estimation pro
and Eq. [2] must be modified to

min
ak,wk,ak,fk

O
n50

N2M

uyf ~n! 2 O
k51

K

h# bkxk~n!u 2. [9]

The method that solves the above-stated minimization pro
is referred to as AMARESf in the following.
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4 VANHAMME ET AL.
The phase changes introduced by applying the FIR filter
influence the visualization of the filtered signals. One solu
is to display the magnitude of the spectra. To display
phased, real spectrum, the DFT transformed signal has
corrected not only for the zero- and first-order phase but
for the frequency-dependent phase response of the filter
is illustrated for anin vivo 31P signal of the perfused rat live
acquired at 4.7 T (81 MHz). In Fig. 1 the real part of
original signal is displayed after zero- and first-order ph
correction. In the left-hand side of Fig. 2 theb-ATP signal ha

een extracted from the signal using the filter and phase
ected to zero and first order. In the right-hand side the filt

FIG. 1. In vivo 31P signal from perfused rat liver, acquired at 4.7 T
MHz). The real, zero-, and first-order phase-corrected parts of the spectr
shown. Peaks of the external standard (ES), phosphomonoesters (PME
ganic phosphate (Pi), phosphodiesters (PDE), and thea, b, andg phosphoru
of adenosine triphosphate (ATP) can be observed.a-ATP is taken as th
reference (0 ppm).

FIG. 2. Real part of the maximum phase FIR-filtered31P spectrum. Lef
first-order phase as in Fig. 1 and for the frequency-dependent phase o
so
n
e
be
so
his

e

r-
d

signal is shown with an additional phase correction to c
pensate for the influence of the filter.

In summary, by using a FIR filter it is possible to elimin
peaks from the spectrum, including their frequency-dom
tails. The distortions introduced by the filter are known and
be taken into account in the model function. The use
maximum-phase FIR filter ensures that the loss of informa
rich samples due to filtering is minimized. The follow
paragraph provides additional information about the design
the proper use of the maximum-phase FIR filters.

Design and use of the maximum-phase FIR filter.The
standard implementation of a maximum-phase FIR filte
based on the technique of (31) and proceeds as follows.
linear-phase FIR filter is designed and transformed to a
imum-phase filter by rooting the filter polynomial and refle
ing the zeros outside the unit circle followed by reconstruc
of the impulse response of the filter. To design the linear-p
filter, the constrained least-squares algorithm proposed in32)

as used. The parameters specifying the filter design ar
lter orderM, cutoff frequencyf c, stop-band suppression s

and passband rippler . In (24) this FIR filter method was use
for water signal suppression in1H MRS. In the latter paper, a
automatic filter design scheme was presented in which the
parameter to be specified by the user is the approximat
quency of the peak of interest that lies closest to the w
peak. The problem at hand here is more difficult since the
may want to suppress one or more regions in the spec
containing nuisance peaks. Therefore the design propos
(24) was adapted in the following way:

1. The user defines the filter cutoff frequenciesfl r and fhr

by selecting the frequency region(s) containing the nuis
peaks, [fl r , fhr ], r 5 1, . . . , R, whereR is the number o
frequency regions.

2. An estimates̃ of the noise standard deviation is cal

are
or-

ero- and first-order phase corrected as in Fig. 1. Right: corrected for ze
e filter.
t: z
f th
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5QUANTIFICATION OF BIOMEDICAL MR SPECTROSCOPY DATA
lated as the standard deviation of the last samples of the
y(n). The peak value,s0, is computed as the value of t
strongest nuisance peak,

s0 5 maxUY~n l!

ÎN
U ,

wheren l [ [ fl r , fhr ] r 5 1, . . . , R.
3. The initial filter suppression sup is taken equal to

sup5
2s̃

s0

and starting values for the filter order (e.g.,M 5 30) and
assband ripple (e.g.,r 5 5%) are chosen.
4. The linear-phase filter is designed and transformed i
aximum-phase filter.
5. The signal is filtered and the maximum valuesm in the

frequency regions of the nuisance peaks is calculated,

sm 5 maxUYf ~n l!

ÎN
U ,

wheren l [ [ fl r , fhr ], r 5 1, . . . , R. If

sm . 2s̃,

the filter suppression (e.g., sup5 sup/5) is increased and t
process is restarted from 4. Ifsm does not decrease in t

ext iteration, the filter order is increased (e.g.,M 5 M 1
0).

f the nuisance peaks are relatively narrow (slowly decay
he above scheme results in a suitable filter in the first itera

higher filter suppression is required if some of the nuisa
eaks have a fast decay. In this case the iterative procedu
nd a filter with a sufficient suppression within a few iterati
,10). The computational complexity is thereby increa

FIG. 3. Group delay of the maximum-phase FIR filter designed to e
cutoff frequency5 31.9 ppm. Right: lower cutoff frequency5 25.14 ppm,
nal

a

),
n.
e
ill

d

ompared to the original filter design scheme. The advan
s, however, that a suitable filter is found independent o
hape and signal energy of the nuisance peaks. See (24) for a
ore detailed discussion on the computational compl
ssociated with the design of the maximum-phase FIR fi
In (24), a maximum-phase filter is constructed that s

resses the water signal down to the noise level while kee
he stop band of the filter as narrow as possible based on
he specification of the first peak of interest closest to the w
eak. A narrow stop band is advisable since in general it

o a higher group delay in the passband than a filter with
ame order, stop-band suppression, and passband ripple
rinciple is illustrated using the same31P example describe

above (Fig. 1). First the automatic design scheme is ap
with 21.43 ppm as a lower bound and 31.9 ppm as an u

ound for the region to be suppressed (Fig. 2). The group
f the resulting maximum phase filter of length 31 is show

he left-hand side of Fig. 3. The group delay of the filter w
5.14 ppm and 44.2 ppm as lower and upper bounds, re

ively, is shown in the right-hand side of the figure. Two effe
an be observed. First, the filter with the larger stop band
n overall smaller group delay in the passband and, secon
eak closest to the filter lower bound is located in the trans
and of the filter, leading to an even smaller group delay

his specific peak. The smaller group delay for the frequen
f interest will lead to an overall loss in SNR and a decrea
esulting parameter accuracy. This shows that care mu
aken on how to specify the lower and upper bounds o
egion(s) to be suppressed and it is therefore advisab
nspect the group delay of the filter in the passband in diffi
cenarios (large stop band and/or bound close to frequen
nterest). When choosing the bound closest to the region
uppressed, it is important to make sure that no signal pa
he nuisance region have a frequency within the transition

ct theb-ATP peaks of Fig. 1. Left: lower cutoff frequency5 21.43 ppm, uppe
per cutoff frequency5 44.2 ppm.
xtra
up
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6 VANHAMME ET AL.
of the filter. Otherwise, the nuisance peaks would be ins
ciently suppressed, introducing bias in the parameters of
est.

If the upper and lower bounds of the region(s) to be
pressed are chosen with some care, the nuisance pea
efficiently removed and the bias of the estimates is elimin
This is accomplished with practically no loss of signal-to-n
ratio and with a low computational complexity. The influe
of the choice of the upper and lower bounds in the filter de
scheme is further examined under Numerical Examples.

Time-Domain Weighting: AMARESw

The influence of nuisance peaks in NLLS parameter es
tion techniques such as VARPRO and AMARES was stu
in (18). The bias term of the amplitude estimates, assu
correct estimates of frequency and damping, was derived
was seen that this term could be reduced by introducin
appropriate weighting vectorv(n), in the NLLS fit:

min
ak,wk,ak,fk

O
n50

N21

uv~n!@ y~n! 2 O
k51

K

xk~n!#u 2. [10]

The choice of the weighting vector is a trade-off betw
reducing the nuisance peaks influence and the loss of SNR
weighting vector should be matched with the frequency
tance, amplitude, and damping of the nuisance peaks to fin
optimal trade-off. This is, however, not feasible in practice
instead a generic weighting vector is applied that is expect
work reasonably well in most scenarios. In (18) a weighting
onsisting of a quarter-wave sinusoid for the first (and las
amples was recommended:

v~n! 5 5 sinSnp

40D n [ @0, 19#

1 n [ @20, N 2 21#

sinS ~N 2 n 2 1!p

40 D n [ @N 2 20, N 2 1#

.

[11]

nserting the weighting function of Eq. [11] into Eq. [10] a
olving it is referred to as AMARESw in the following. The
ethod is expected to give good results for relatively w

eparated peaks. However, the technique always leads to
f SNR resulting in an increased variance of the param
stimates. These properties are illustrated under Num
xamples.

SVD Filter Method: AMARESH

Another approach to solve the problem of FS estimation
model the nuisance peaks by a black-box method and su
the reconstructed time-domain signal from the original si
-
r-

-
are

d.
e

n

a-
d
g

d it
an

n
he
-

the
d
to

0

l-
loss
er
cal

to
act
al

prior to parameter estimation. This technique has already
applied for solvent suppression using various technique
estimate the water signal. A black-box method often use
this context is the HSVD method (20). HSVD is a subspac
based parameter estimation method in which the noisy s
space is subdivided into a “signal” and a “noise” subsp
using a SVD of a Hankel data matrix (33). The signal subspa
s found by truncating the SVD of this matrix to rankM, the
umber of exponentials that models the underlying signa
eneral HSVD provides a mathematical fit of the data by a
f exponentially damped complex-valued sinusoids. HS
an therefore be used to approximate complicated featu
he nuisance peaks. The signal corresponding to the
egions is subsequently subtracted from the original sign

In this paper the following scheme is used to process sp
ith HSVD for FS estimation:

1. The user specifies the model orderM and frequenc
egions where the nuisance peaks have a frequency lo
fl r , fhr ], r 5 1, . . . , R, whereR is the number of frequenc

regions.
2. HSVD is used to model the original signal by a sum oM

exponentially damped complex-valued sinusoids.
3. The modeled peaks lying within the user-defined reg

are used to reconstruct the nuisance peaks. Afterwar
reconstructed nuisance signal is subtracted from the or
signal.

4. The residual signal is quantified with AMARES.

The complete procedure is denoted as AMARESH in the fol-
lowing.

A drawback of this method is the large computational c
plexity since it requires the computation of the SVD of
Hankel data matrix. Fast versions of this HSVD algorithm h
been developed in which the computation of a full SVD
circumvented; see (34, 35). The gain in efficiency of these fa
methods, however, decreases when the number of data
decreases and/or the model order increases (35). The choice o
model orderM in HSVD is not trivial in case the near
nuisance peaks have an unknown or other than Loren
model function. The choice of the correct model orde
important (and difficult) since undermodeling or overmode
can lead to a deterioration in parameter accuracy (see24)).
Methods exist that make an automatic choice of model o
based on various information criteria and on the domi
singular values (see, e.g., (37) and reference therein). In th
paper the minimum description length (MDL) criterion use
(37) is examined in the context of FS parameter estima
The MDL criterion, however, requires the knowledge of a
the singular values. Consequently, the entire SVD mus
calculated when the MDL criterion is used to estimate
model order and no fast methods such as those presen
(34, 35) can be used.
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7QUANTIFICATION OF BIOMEDICAL MR SPECTROSCOPY DATA
Frequency-Domain Fitting: AMARESFREQ

FS estimation using frequency-domain model fitting is d
by minimizing the difference between the DFT transform
data and a model function for the frequency region(s
interest. The influence from the other peaks in the spectru
not zero in the frequency region(s) of interest and mus
taken into account. This is normally done by introducing e
parameters to model the tails of the nuisance peaks. He
choose to use a polynomial basis function. The complete m
function used to model the spectrum in the frequency regi
of interest is given by

Ŷ~n l! 5 O
k51

K

ake
jwk

1 2 e~2ak1j2p~ fk2n l!! NDt

1 2 e~2ak1j2p~ fk2n l!!Dt 1 O
p50

P

dpn l
p

n l [ @ fl r, fhr#, r 5 1, · · ·,R, [12]

where P is the model order of the polynomial,dp are the
complex polynomial coefficients, and [fl r , fhr ], r 5 1, . . . ,R
is (are) the frequency region(s) of interest.

To obtain the parameters of interest, the minimization is
only carried out over the frequency region(s) of interest ins
of over the entire frequency range as done in Eq. [4]:

min
ak,wk,ak,fk,dp

O
n l[@ fl r, fhr#

r51, . . . , R

uY~n l! 2 Ŷ~n l!u 2,

k 5 1, . . . , K, p 5 0, · · ·,P. [13]

he minimization procedure of Eq. [13] is denoted
MARESFREQ in the following. The user must specify t

frequency range of the regions of interest and as a fun
thereof the polynomial order must be chosen. In difficult c
where the peaks of interest are not lying on a flat baselin
choice of the polynomial order is not trivial. If the polynom
model order is chosen appropriately, i.e., if the polynomial
good model for the underlying baseline in the frequency re
included, the estimation bias is expected to be low. The i
duction of these extra parameters to be estimated inev
increases the variance of the parameter estimates. If the
nomial is not a good model for the baseline, bias is introd
in the estimated parameters. The influence of the choice o
frequency region and the corresponding polynomial orde
further investigated under Numerical Examples. Note
other choices of basis functions (e.g., (damped) sinus
might in some cases lead to a better modeling of the bas

NUMERICAL EXAMPLES

The above methods are compared for three examples
an artificial two-peak example is constructed to examine
e
d
f
is
e
a
we
el
s)

w
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n
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he
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d
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irst
e

estimation properties of the different methods as a functio
the amplitude of the nuisance peaks and the frequency dis
between the nuisance peaks and the peaks of interes
performance of AMARESf in case of a non-Lorentzian lin-
shape is also examined. Thereafter the methods are eva
for two relevant biomedical MRS examples. Unless other
specified the model function of Eq. [1] is used and the ad
complex noise is circular, white, and Gaussian distributed
SNR for each peak is expressed in decibels (dB) and defin

SNR peakk 5
D

20 logSak

s D ,

where s is the noise standard deviation. The quality of
amplitude estimates is measured as the relative root
squared error (RRMSE) in percentages:

RRMSE peakk 5
D

100Î1

L O
l51

L ~ak 2 ã k
l ! 2

ak
2 ,

hereL is the number of simulation runs andãk
l denotes th

estimate ofak obtained in simulation runl . In the following
examples, the number of simulation runs is taken equal to
The relative bias (RBias) in percentages

RBias peakk 5
D

100

ak 2
1

L
¥ l51

L ã k
l

ak

and the relative standard deviation (RSTD) in percentage

RSTD peakk 5
D

100Î 1

L 2 1 O
l51

L S ã k
l 2

1

L
¥ l51

L ã k
l D 2

ak
2

are also used to express the theoretical expectations abo
performance of the methods. The RRMSE is compared t
relative Crame´r-Rao lower bound (CRB). The CRB is calc
lated from a model consisting of the peaks of interest only.
CRB indicates the best possible accuracy of an estimate foany
unbiased estimator (see, e.g., (36)).

Two-Peak Example

In this section we consider an example consisting of
xponentially damped sinusoids in which only one is of inte
he peak of interest (peak1) has the following parameter va

f1 5 20 Hz

a1 5 10 Hz
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8 VANHAMME ET AL.
w1 5 0 degrees

a1 5 20 au

The damping and phase of the nuisance peak (peak2) are
to

a2 5 10 Hz

w2 5 0 degrees,

whereas the amplitude and frequency of peak2 are varied
sampling frequency is 1 kHz and the number of data poin
512. Unless otherwise specified the SNR used in the sim
tions for peak1 is equal to 10 dB.

Part A: Frequency-Domain Baseline Fitting Using
AMARESFREQ

Procedure. The purpose is to assess the influence o
polynomial baseline fit on the accuracy of the paramete
peak1 estimated with AMARESFREQ. Simulations were ru

ith and without inclusion of a polynomial baseline. T
mplitude of peak2 is varied between 10 and 320 au whi

requency is fixed to 0.1 kHz. Polynomial orders varied f
5 0–5 and the frequency region included in Eq. [13]
0.2 to 0.04 kHz.
The RRMSE, RSTD, and RBias of the amplitude estim

f peak1 are shown as a function of the amplitude of peak
ifferent polynomial orders in Fig. 4.
To get an idea of the influence of the size of the freque

egion included in Eq. [13], the amplitude of peak2 is fixed
he lower and upper bounds of the frequency interval are v
etween20.5 and 0.01 kHz and between 0.03 and 0.09 k

FIG. 4. Two-peak example: RRMSE, RSTD, and RBias of amplitud
nuisance peak (peak2) for the frequency-domain fitting procedure AMA
peak15 10 dB. Left: RRMSE. Top right: RSTD. Bottom right: RBias. C
ed

he
is
la-

e
of

ts

s

s
or

y
d
ed
z,

respectively. The corresponding parameter accuracy of p
(RRMSE, RSTD, RBias) with the amplitude of peak2 fixed
320 au is shown in Fig. 5 (forP 5 2) and Fig. 6 (forP 5 4).

Results and discussion.A higher polynomial order is re
uired to achieve good estimates as the amplitude of p

ncreases (Fig. 4). It is seen that the bias almost vanishes
olynomial order is chosen to be sufficiently high. The p

or including additional polynomial parameters is an increa
tandard deviation on the estimates.
The standard deviation is overall lower forP 5 2 (Fig. 6),

ut the bias is in general much larger than the bias forP 5 4
Fig. 6), thereby confirming the result of Fig. 4. It can also
bserved that if the region of interest is small, the stan
eviation is higher since the number of points included in
ptimization problem is smaller. The polynomial of orderP 5
is seen to be a bad model for the baseline for almos

hoice of the frequency region. The polynomial model of o
5 4 is a good approximation for most choices of

requency region but also breaks down when the frequ
egion becomes too large.

As the amplitude of peak2 decreases, a lower polyno
rder suffices to model the baseline and the results bec

ess sensitive to the frequency range included in Eq. [13

art B: Time-Domain FIR Filtering Using AMARESf

Procedure. The purpose is twofold: first to assess
influence of the value of the upper and lower bound of
region to be suppressed in the AMARESf filter design schem
and second to assess the performance of the method in ca
nuisance peak does not have a Lorentzian lineshape.

The amplitude of peak2 is fixed to 320 au and the uppe
lower bounds are varied between 0.11 and 0.5 kHz and
and 0.09 kHz, respectively. The RMSE, RSTD, and RBia

timates of peak1 (a1 5 20, f 1 5 0.02 kHz) as a function of the amplitude of t
Susing a polynomial baseline fit with different polynomial ordersP, SNR of
denotes the theoretical lower bound.
e es
REFREQ

RB
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9QUANTIFICATION OF BIOMEDICAL MR SPECTROSCOPY DATA
the amplitude estimates of peak1 are shown in Fig. 7
function of the bounds.

To test the performance of AMARESf in case the lineshap
is non-Lorentzian, an example is used consisting of two Ga
ian peaks:¥ k51

2 ake
2gk (nDt)2ej (2pfknDt1wk ), with

f1 5 20 Hz

a1 5 20/~Îp ln 2!au

a2 5 230/~Îp ln 2!au

g1 5 g2 5 102/~4 ln 2!Hz2

w1 5 w2 5 0 degrees

FIG. 5. Two-peak example: RMSE, RSTD, and RBias of the AMARF

idth of the frequency region included in Eq. [13]. The lowest frequency
0.09 kHz. The polynomial order isP 5 2. The parameters of peak2 area2 5

ottom right: RBias.

FIG. 6. Two-peak example: RMSE, RSTD, and RBias of the AMARF

idth of the frequency region included in Eq. [13]. The lowest frequency
0.09 kHz. The polynomial order isP 5 4. The parameters of peak2 area2 5

ottom right: RBias.
a

s-

and f 2 varying between 0.06 and 0.22 kHz. Note that
Gaussian peaks have the same full width at half height an
same maximum value of the real part of the DFT spectru
Lorentzian peaks with amplitudes of 20 and 320 au and d
ings of 10 Hz. The SNR of peak1 is equal to 6.6 dB. The fi
design scheme is used with upper and lower bounds o
region to be suppressed equal to the frequency of peak2
and minus 0.02 kHz, thereby fulfilling the basic principles
explained under Design and Use of the Maximum-Phase
Filter. Equation [9] was adapted to compensate for the
influence in case of a Gaussian lineshape. The result
displayed in Fig. 8.

Results and discussion.The bias is effectively removed f
almost all combinations of upper and lower bounds used i

amplitude estimates of peak1 (a1 5 20, f 1 5 0.02 kHz) as a function of th
ies between20.5 and 0.01 kHz and the highest frequency varies between 0.0
0, f 2 5 0.1 kHz. SNR of peak15 10 dB. Left: RRMSE. Top right: RSTD

amplitude estimates of peak1 (a1 5 20, f 1 5 0.02 kHz) as a function of th
ies between20.5 and 0.01 kHz and the highest frequency varies between 0.0
0, f 2 5 0.1 kHz. SNR of peak15 10 dB. Left: RRMSE. Top right: RSTD
ESREQ

var
32
ESREQ

var
32
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10 VANHAMME ET AL.
filter design scheme (Fig. 7). The method breaks down w
the upper and/or lower bound is chosen too close to
frequency of peak2, resulting in insufficient suppression o
nuisance peak. A slight increase in standard deviation ca
observed when the lower cutoff frequency is chosen clos
the peak of interest. This is explained by the resulting lo
group delay for peak1 leading to a loss of SNR and su
quently a higher standard deviation.

AMARESf has no problems in dealing with the Gauss
nuisance peak (Fig. 8). The bias is removed and the RR
follows the CR bound very closely.

Part C: Method Comparison

Procedure. The accuracy of the four frequency-selec
estimation methods is compared.

FIG. 7. Two-peak example: RMSE, RSTD, and RBias of the AMAREf a
nd upper bounds in the filter design scheme. The parameters of peak2a2

Bottom right: RBias.

FIG. 8. Two-peak example: RRMSE, RSTD, and RBias of the AMA
frequency of the nuisance peak (peak2,a2 5 216.9). The twopeaks have
Bottom right: RBias. CRB denotes the theoretical lower bound.
n
e
e
be
to
r
e-

n
E

The frequency of peak2 is varied between 0.06 and 0.22
while its amplitude is kept fixed at 320 au. The results
displayed in Fig. 9. For AMARESFREQ, the polynomial orde
that eliminates the bias and has the lowest standard devia
shown for every frequency. The frequency region from20.15
to 0.04 kHz is included in Eq. [13] for all frequencies of pea
It was verified that for the polynomial orders shown, the w
of this frequency interval was not critical. For AMARESf, the
upper and lower bounds in the filter design scheme are ch
as the frequency of peak2 plus and minus 0.02 kHz, the
fulfilling the basic principles explained under Design and
of the Maximum-Phase FIR Filter. In AMARESH the mode

rder is taken equal to 2, the theoretical one.

Results and discussion.For AMARESw a “breakdown
frequency is found below which the assumptions of a “la

litude estimates of peak1 (a1 5 20, f 1 5 0.02kHz) as a function of the lowe
20, f 2 5 0.1 kHz. SNR of peak15 10 dB. Left: RRMSE. Top right: RSTD

plitude estimates of peak1 (a1 5 13.6, f 1 5 0.02 kHz) as a function of th
aussian lineshape. SNR of peak15 6.6 dB. Left: RRMSE. Top right: RSTD
Smp
are5 3
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11QUANTIFICATION OF BIOMEDICAL MR SPECTROSCOPY DATA
frequency separation no longer hold. The method is succe
in eliminating the estimator bias outside this region, but
loss of SNR associated with this approach increases the
dard deviation of the estimates. AMARESFREQ is capable o

andling close nuisance peaks if the polynomial order is
en high enough. This is confirmed by the low estimator
he standard deviation is, however, increasing as a functi

he polynomial order thereby degrading the estimates.
ime-domain methods based on FIR filtering and HSVD fi
ng are clearly outperforming the other methods and
RMSEs are very close to the theoretical lower bounds

or a small frequency separation.

Frequency-Selective Quantification
of in vivo 13C Spectrum

Procedure. A simulation study is performed using sign
erived from anin vivo proton decoupled13C spectrum o

subcutaneous adipose tissue in the human forearm. The
trum was acquired at 4.7 T (50.3 MHz) using a 5-cm-diam
double-tuned surface coil. In some applications one is
interested in obtaining estimates of the two peaks around
and 130 ppm, respectively. The peak at 130 ppm corresp
to carbons in double bonds of mono- and polyunsaturated
acid chains while the peak at 128 ppm corresponds exclus
to carbons in double bonds of polyunsaturated chains.
amplitudes of these peaks can be used to study noninva
the relative amounts of poly- and monosaturation of fatty a
in human tissue. The real, phased spectrum of the originin
ivo signal is displayed in the left-hand side of Fig. 10 w
he real, phased spectrum of the FIR-filtered signal is show
he right-hand side.

The simulation signal was derived as follows. Thein vivo
signal was quantified using AMARES. The model fitted to

FIG. 9. Two-peak example: RRMSE, RSTD, and RBias of the ampl
the nuisance peak (peak2,a2 5 320) for different FS estimation procedur
CRB denotes the theoretical lower bound.
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signal consisted of 15 Lorentzian peaks and no prior kn
edge was imposed. The estimated parameters were then u
parameters for the noiseless simulation signal. The sam
frequency is 10 kHz and the number of data points is 512
important to note that the region around 30 ppm was diffi
to model correctly. In that region some signal features are
present in the residual, while outside that frequency regio
residual looks like white noise. In this case it is certa
advantageous to use FS estimation, since no satisfactory
is present for the entire signal.

The accuracy of the four FS estimation methods is comp
for the peak at 130 ppm for different noise levels.
AMARESFREQ, different polynomial orders and widths of fr-
quency regions were tested. The results obtained for diff
model orders in AMARESH were compared and the perf-

ance of the automatic order estimation scheme was e
ned. In AMARESf the influence of the choice of the upper a
lower bounds in the filter design scheme was studied. Figu
shows results for AMARESFREQ with P 5 1, lower bound
equal to 117 ppm, upper bound equal to 147 ppm. The re
displayed for AMARESf were generated with suppression
the region below 73 ppm and above 167 ppm. For AMARH
the results were obtained for a model order of 15.

Results and discussion.In AMARESFREQ quantification o
the 13C spectrum turned out to be impossible without inclu
of a polynomial. A polynomial order ofP 5 0 is only valid in

small region around the two peaks of interest. A polyno
rder of P 5 1 provides a bias close to zero in a la

requency region: the lower bound can vary between 87
17 ppm and the upper bound between 137 and 161
here is no significant change in standard deviation and R

n this region. There is only a slight increase in RRMSE
sing a higher polynomial order. For AMARESH, there are n

e estimates of peak1 (a1 5 20, f 1 5 0.02 kHz) as a function of the frequency
SNR of peak15 10 dB. Left: RRMSE. Top right: RSTD. Bottom right: RBia
itud
es.
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12 VANHAMME ET AL.
significant differences between the results obtained fo
theoretical model order and those determined by the auto
model order selection criterion. The results are very insens
to the choice of the lower and upper bounds in the filter de
scheme. Only if the bounds are chosen close to the pea
interest is there a degeneration in the results. As seen in
11, the results for both AMARESf and AMARESH are very
lose to the theoretical CR bound. Since the peaks of int
re well separated from the other peaks in the spectrum
ther methods perform only slightly worse, as expected.
lso that all methods are able to remove the bias and th
STD contributes most to the RRMSE.
FS estimation in this case also leads to a reductio

alculation time. Quantifying all 15 peaks of the spectrum
MARES takes about 7.6 s, while it takes 0.6 s to analyze

FIG. 10. In vivo proton-decoupled13C spectrum of subcutaneous adi
uantified are at 128 and 130 ppm. Left: real, phased part of13C spectrum.

FIG. 11. RRMSE, RSTD, and RBias of amplitude estimates of the pe
SNRs using different FS estimation methods. The polynomial orderP used i
right: RBias. CRB denotes the theoretical lower bound.
e
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two peaks of interest with AMARESf. The filter design itse
takes less than 1 s in this case. Overall, FS estimation in t
example reduces the computation time with a factor of 5

Frequency-Selective Quantification
of in vivo 31P Spectrum

Procedure. The simulation study in this section is based
a signal derived from anin vivo 31P signal of the perfused r
liver, acquired at 4.7 T (81 MHz), displayed in the left-ha
side of Fig. 1. Theb-ATP signal is used for the quantificati
of the ATP concentration, since, unlike the other ATP sign
it is essentially free from underlying contributions from ot
low-concentration molecules. Therefore, in some applicat
it is interesting to extract only the parameters of theb-ATP

e tissue in the human forearm (acquired at 4.7 T (50.3 MHz)). The pe
ht: real, phased part of the same signal after maximum phase FIR filte

located at 130 ppm in the simulated13C spectrum derived from Fig. 10 for differe
MARESFREQ is 1 for all SNR levels. Left: RRMSE. Top right: RSTD. Botto
pos
Rig
ak
n A
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13QUANTIFICATION OF BIOMEDICAL MR SPECTROSCOPY DATA
triplet. In Fig. 2, how the triplet can be extracted using
FIR-filter method is illustrated.

To derive the parameters of the simulation signal, thein vivo
signal was quantified using AMARES. A Lorentzian linesh
was used and the first data points were excluded from the
reduce the influence of the broad contribution. The follow
prior knowledge was imposed:

1. amplitude ratios: 1/1 in doublets ofa- andg-ATP, 1/2/1
in b-ATP triplet;

2. frequency splittings of 16 Hz within the multiplets;
3. dampings of all ATP peaks equal;
4. phases of all peaks equal.

The noise level in the simulations is similar to the one in thin
vivo signal. In all four compared methods the dampings
phases of the threeb-ATP peaks were constrained to be eq
and an amplitude ratio of 1/2/1 and frequency splittings o
Hz were imposed. The sampling frequency is 5 kHz and
number of data points is 128. The amplitude of the ATP p
was varied from 20 to 100% of the originally derived va
These variations correspond to changes typically encoun
in in vivo 31P signals. The accuracy of the FS method
compared. Different polynomial orders (P 5 0–5) andwidths

f frequency regions were tested for AMARESFREQ. The uppe
bound of the frequency region included in Eq. [13] was va
between25.88 and22.5 ppm and the lower bound betwe

17.5 and211.3 ppm. The influence of the specified up
nd lower bounds in the filter design scheme was tested

ower bound of the frequency region to be suppressed
aried between25.88 ppm and22.5 ppm and the upper bou
etween 33.2 ppm and 44.2 ppm. The sensitivity of
RMSE of theb-ATP peaks w.r.t. the choice of these para
ters in AMARESFREQ and AMARESf is shown in Fig. 12.The

results are displayed for the lowest ATP value and
AMARESFREQ the polynomial order isP 5 1. The influence o

FIG. 12. RMSE of the amplitude estimate ofb-ATP in case their concen
egion included in Eq. [13] (AMARESFREQ). The results are displayed forP 5 1
cheme (AMARESf).
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the choice of the model order in AMARESH and the automat
order selection method were investigated and the results o
analysis are shown in Fig. 13 for theb-ATP peaks. In Fig. 1
the 4 FS parameter estimation methods are compared
results of AMARESFREQ corresponding toP 5 1 are shown. A
ower bound of22.5 ppm and an upper bound of 33.2 p
were used in AMARESf. The model order in AMARESH is

qual to 11, the theoretical model order.

Results and discussion.A polynomial order ofP 5 1 is
eeded to get reasonable results—low bias and standard
tion—for AMARESFREQ (Fig. 12). The choice of the regio

included in Eq. [13] is in this case important since the mod
only valid in a rather small frequency region. Higher poly
mial orders, however, lead to a large increase in stan
deviation, thereby worsening the results even more. The c
of lower and upper bound in the AMARESf filter design
scheme is not critical. Only if the lower bound is chosen c
to the peaks of interest is there a degradation of the amp
estimates.

For AMARESH the choice of the model order has a str
influence on the accuracy of amplitude estimates of theb-ATP

eaks (Fig. 13). Slight undermodeling (M 5 8) gives the sam
esults as using the correct model order. Overmodeling, o
ther hand, leads to much worse results. A similar phenom
ccurs when HSVD is used to model the water peak (24) in

proton spectra. A wrong choice of model order in that ap
cation also leads to a deterioration of parameter accuracy
MDL criterion for automatic order estimation works very w
for ATP values between 40 and 100% of the original value
breaks down for values below 20%, i.e., in low SNR cas

The results for AMARESH and AMARESf are very simila
if the right model order is chosen in AMARESH (Fig. 14).
AMARESw and AMARESFREQ perform worse for all ATP
amplitudes. Again the bias is effectively removed for

tion has dropped to 20% of their original value. Left: a function of the fre
ight: a function of the choice of the lower and upper bounds in the filter d
tra
. R
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14 VANHAMME ET AL.
methods but the standard deviation of AMARESw and
MARESFREQ is higher.
The gain in calculation time in this particular example is

pronounced than in the13C example. In the13C example 2 of 1
peaks are quantified. Since no prior knowledge is used i
13C example, AMARESf minimizes a cost function with
variables while AMARES used on the entire signal minim
a cost function with 60 variables. In this particular exam
since we impose a lot of prior knowledge, the numbe
variables to be fitted by AMARES used on the entire sign
20, compared to 8 variables for AMARESf. Quantifying the
entire spectrum using AMARES takes about 1.5 s, while
lyzing theb-ATP region only with AMARESf takes 0.3 s. Th
filter design in this case also took less than 1 s. Overall, the

FIG. 13. RRMSE, RSTD, and RBias of the estimates of the amplitud
denotes the results obtained by the automatic model order selection crit

aximum value. The corresponding SNR of the two outer peaks in the t

FIG. 14. RRMSE, RSTD, and RBias of the estimates of the amplitude
for ATP amplitudes ranging between 20 and 100% of the maximum valu
24 and 10 dB. The polynomial order used in AMARESFREQ is 1 for all b-ATP
he theoretical lower bound.
s

he

s
,
f

is

a-

IR

filter approach still leads to a slight reduction in calcula
time.

CONCLUSIONS

In this paper frequency-selective quantification of biom
cal MRS data is studied. The influence of nuisance peaks
most cases not negligible and must be taken care of pr
parameter estimation. A number of methods that can be us
combination with time-domain or frequency-domain mo
fitting procedures are revisited: time-domain weighting, HS
filtering, fitting in the frequency domain using a polynom
baseline. A new method based on maximum-phase FIR

of theb-ATP peaks for different choices of model order (M) in AMARESH. AUT
n. The results are obtained for ATP amplitudes ranging between 20 and% of the
et varies linearly between24 and 10 dB. CRB denotes the theoretical lower bo

f the-ATP peaks for four different FS estimation methods. The results are ob
The corresponding SNR of the two outer peaks in the triplet varies linea
plitudes. Left: RRMSE. Top right: RSTD. Bottom right: RBias. CRB den
es
erio
ripl
s ob
e.
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15QUANTIFICATION OF BIOMEDICAL MR SPECTROSCOPY DATA
ing is presented in this context and compared with the othe
methods.

The time-domain weighting procedure, AMARESw, can be
used to reduce the estimator bias if the peaks of interes
well separated from the nuisance peaks. The price is, how
a loss of SNR thereby increasing the estimator variance. M
over, the method breaks down when the peak of intere
close to the nuisance peaks.

If the appropriate model order is chosen, the HSVD filte
method AMARESH is seen to be a very accurate technique

S estimation. A drawback of the method is the sensitivit
he chosen model order in more difficult cases. The use o
inimum description length criterion to automatically de
ine the model order was examined. MDL works well fo

easonable SNR but breaks down when the SNR decrea
rawback of the use of MDL is that an entire singular va
ecomposition of a matrix needs to be computed, which is
onsuming.
Analyzing only a part of the spectrum is straightforward

mplement for frequency-domain fitting methods (e
MARESFREQ) suggesting that these methods are suitabl

FS estimation. However, the situation is complicated by
influence of the nuisance peaks which have to be model
some way. Using a polynomial to model the tails of
nuisance peaks is one way of reducing this influence. I
polynomial badly models the baseline in the region of inte
bias is introduced in the estimates and the choice of polyno
order in combination with the size of the frequency regio
seen to be critical. These extra baseline model parameter
increase the variance of the estimates.

If the upper and lower bounds of the frequency region(
be suppressed are chosen with some care, AMARESf is able to
keep the bias and the standard deviation of the paramet
interest low. The automatic filter design scheme makes
method easy to use and the computational complexit
AMARESf is low.

Two important MRS applications were examined. The
one is the extraction of two close peaks, remotely located
the other peaks in a13C spectrum. Since this is a rather e
example, all FS methods perform very similarly. The use o
FIR filter approach leads in this case to a reduction in com
tational time when compared to fitting the entire spectrum
AMARES. In the 31P example, the parameters of theb-ATP
peaks were extracted. The FIR filter method leads to the
results. HSVD filtering performs well only for an appropri
choice of model parameters and the accuracy of the resu
seen to be very sensitive to the model order. For AMARESFREQ

the choice of the polynomial order and frequency region
cluded in the fit were rather critical for this example.

In summary, the low computational complexity, ease of
and high parameter accuracy make AMARESf an attractive
tool for FS parameter estimation.
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