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In this paper the possibility of obtaining accurate estimates of
parameters of selected peaks in the presence of unknown or uninter-
esting spectral features in biomedical magnetic resonance spectros-
copy (MRS) signals is investigated. This problem is denoted by fre-
quency-selective parameter estimation. A new time-domain
technique based on maximum-phase finite impulse response (FIR)
filters is presented. The proposed method is compared to a number of
existing approaches: the application of a weighting function in the
time domain, frequency domain fitting using a polynomial baseline,
and the time-domain HSVD filter method. The ease of use and low
computational complexity of the FIR filter method make it an at-
tractive approach for frequency-selective parameter estimation. The
methods are validated using simulations of relevant *C and *P MRS
examples.  © 2000 Academic Press
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INTRODUCTION

Gaussian noise. The caret on théndicates that this quantity
represents the model function rather than the actual measu
ments. The time-domain estimation methods can be divids
into two classes. On the one hand, there are the so-call
black-box methods (examples can be foundlinr4)). Minimal
user interaction and limited incorporation of prior knowledgs
are inherent to this type of methods. Recent variants have be
proposed in which some forms of prior knowledge can b
imposed $-7). On the other hand, interactive methods exis
that are iterative, require user involvement, and allow inclusic
of prior knowledge. These algorithms minimize the differenc
between the data and the nonlinear model function:

N—-1

min > |y(n) — g(n)|*.

ak ek akfie =g

(2]

This nonlinear least-squares (NLLS) approach leads to ma

Accurate and efficient quantification of magnetic resonanggum likelihood parameter estimates if the underlying assum
spectroscopy (MRS) signals is the essential step prior to #igns concerning the model function and noise distribution al
conversion of the estimated signal parameters into biochemiggtisfied. VARPROS&) and the more recent AMARE D) are
quantities (e.g., concentration, pH). The quantification of th&amples of this type of methods.
signal can be done directly in the measurement domain orthe frequency-domain methods can also be divided into tv
alternatively in the frequency domain after transformation kyasses. Thaonparametridrequency-domain methods are base

the discrete Fourier transform (DFT).
The time-domain function often used to model thienea-

on integration of the peak area of the frequency-domain sigr
(10). The advantage of these methods is that no assumptions h

sured data points is the following sum of exponentially dampeg be made concerning the signal, but the accuracy of the integ

complex sinusoids (Lorentzians):

K

y(n) = §(n) + w(n) = 2 ae¥e 2mini 4 w(n)
k=1
0,...

N -1, (1]

wherej V-1, a, is the amplitudep, the phaseq, the
damping, and, the frequency of th&th sinusoidk =1, ...,
K); At the sampling interval, and is circular complex white

1

tion-based methods requires appropriate phasing (which is
from trivial) and is dependent on the definition of the integratio
area, especially in those cases where the peaks are not \
separated, when missing time-domain data or acquisition artifac
or when unidentified broad resonances distort the frequenc
domain baseline. More advancpdrametric frequency-domain
methods have been presented that rely on a model function for
metabolite peaks (see, e.d.1€13). The methods are often based
on the time-domain model given in Eq. [1]. The model is trans
formed into a frequency-domain model by the DFT resulting i
the expression
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K 1 — @l -axtizn( fiom) Nt number of preprocessing techniques have been presented
F{9(n)} = Y(v) = D ael* o can be applifaq to remove the influence of .nuisance peal§s pr
k=1 1-e to a model-fitting procedure. The HSVD filter meth@&D) is

an example of such a technique that can be used to estim:
reconstruct, and finally subtract the signal part correspondil
_ ) to the nuisance peaks from the original signal. Other exampl
To obtain the parameters, the difference between the DFTp{seq on different filtering (convolution) techniques are give
the data and the frequency-domain model function is minjy Refs. @1-23. In Ref. 24) a powerful technique based on

v =1I(NAY), 1=0,...,N—1. 13]

mized: the use of a maximum-phase finite impulse response (FI
filter followed by fitting an adapted time-domain model func

N-1 tion to the metabolites of interest was proposed to suppress

min > |[Y(») — Y(»)|2 [4] water peak. FS parameter estimation is usually considered

gl |=g be very easy in the frequency domain. Indeed, fitting of

frequency-domain model function in a well-defined frequenc

The solution of this NLLS problem is the same as the orregion is straightforward to implement. The situation is, how
obtained by minimizing Eq. [2] directly in the time domain. Ifever, complicated by the fact that the “tails” of the nuisanc
a model other than the Lorentzian one is used (e.g., Gausgpeaks overlap with the frequency region of interest. This |
Voigt), a simple exact analytical expression for the DFT of thesually handled by modeling the nuisance peaks in the fr
a model function is not availablel4). It is, however, always quency region of interest as an additional baseline by sor
possible to numerically compute the model function in thehoice of basis functions (e.g., polynomials, sinusoids, damp
frequency domain by taking the DFT of the model function isinusoids) 12, 15, 25.
the time domain 15). In this paper the FIR filter method presented B¥)(is

If the spectrum contains clusters of peaks of which little iadapted for general use in FS parameter estimation. T
known and of which no model function is available, parametenethod is compared to time-domain weighting, HSVD preprc
estimation becomes difficult. These nuisance signals hampessing, and frequency domain fitting using a polynomial bas
the accurate quantification of the peaks of interest. Brod#ide. The paper is organized as follows: In the next section tt
underlying components are usually dealt with by deleting tHeS quantification methods under investigation are presentt
first data points. Peaks having approximately the same danijre following section contains an exhaustive numerical eve
ing as the peaks of interest have to be treated differently. In thiation of the presented methods. This is partly done by
paper we focus on the quantification of a few selected peakssihple simulation example but also by applying the methods
the spectrum in the presence of other peaks, whose influetwe relevant biomedical MRS scenarios. Finally, in the las
cannot be reduced by deleting a few data points. The issuesézxtion, the main conclusions are formulated.
denoted by frequency-selective (FS) parameter estimation in
the following paragraphs. FREQUENCY-SELECTIVE QUANTIFICATION METHODS

The problem has been studied previously and some methods
that can be used in combination with black-box time-domain In this section four methods that can be used for FS paral
methods have been proposed in the literatd® (7. How- eter estimation are described. All methods are based on mo
ever, sincein vivo MRS signals are characterized by a lowitting by the NLLS solver used in AMARESJ. The Jacobian
signal-to-noise ratio (SNR), prior knowledge often needs to laed function values are calculated analytically for all methoc
imposed to obtain relevant parameter estimates. Therefaeking the imposed prior knowledge and preprocessing ste
time-domain (or frequency-domain) methods based on modieio account. Three methods are used in combination wi
function fitting will be considered here. A limited number otime-domain parameter estimation: FIR filtering (convolution)
results obtained in this field can be found in the literature. Otiene-domain weighting, and HSVD filtering. A detailed dis-
example is 18) where a time-domain weighting in combina-cussion covers the adaptation of the FIR filter method pr
tion with VARPRO was proposed to minimize the influence afented in 24) for FS parameter estimation. Finally, a fre-
nuisance peaks on parameter estimates of peaks that are i@ncy-domain model-fitting method based on minimizing i
tively well separated from the nuisance peaks. Recently,cartain frequency intervals the difference between the DF
simple preprocessing method, ER filtek9), has been pro- transformed data and the model function of Eq. [3] (with
posed. Although this technique inherently distorts the signalgblynomial baseline added to the model) is described.
can be used in cases where the spectral region of interest idlote that AMARES, and AMARES,, which are described
small compared to the full spectral width and the number bklow, are implemented within the software package MRL
data points is large. Other examples can be found in methd@s$, 27, a graphical user interface for facilitating the use o
that have been applied to a special case of FS estimation, isephisticated analysis routines for MRS data quantification
solvent suppression ifH MRS. In this well-studied field a biomedical/biochemical laboratories and the clinical enviror
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ment. The newly developed method AMARESIIl be incor- = hbyxy(n) + hbyxy(n) + - - -+ hbXx«(Nn)
porated in a future release of the MRUI package.

K
FIR Filter Method: AMARES = hbx(n) n=0,...,N—M, 7]
k=1

Basic theory of the method.An FIR filter is defined by the
convolution sum

where
M-1 x(n) = aelee-atizandt =1 K
yin)= > hy(n—-m) n=0,... ,N—1, [5]
m=0 denote the individual, exponentially damped complex sint
soids,

where {h.} .-0....m-1, are the constant (possibly complex)

filter coefficients (see, e.9.29)). To obtain the firstid — 1) P A (h C - hy)
samples ofy;(n) it is usually assumed that the signal is M1 0
zero outside the time window or cyclic. Either of these as-
sumptions leads to distortions in the firs (— 1) samples of and
y:(n), which therefore have to be discarded resulting in the
signal b, A (1 e(-axtizniat , | g(-acti2afd(M-DAY T
M-1 The superscript T denotes the transpose. From Eq. [7] it is Se
yi(n)= > hpy(n—m+ M — 1), that the filtered NMR signal consists of the original dampe
m=0 sinusoids (same frequency and damping) altered by a comp
n=0,...,N—M. [6] scz_ilarﬁbk. The filtgr can thereby be de_signe(_j to suppress tl
nuisance peaks (i.e., makbb,| ~ 0) including their fre-

The samples which are discarded should contain as little sigﬁgfency d_omam tails (see, e.g_24( 30) \.Nh”e leaving the
. . . . . . €aks of interest practically undistorted (i.e., mka| ~ 1).
information as possible. For a decaying signal this can Re ; .

. . . Signals not exactly obeying the Lorentzian model are als
achieved as follows. One of the important effects of applylneqf

the FIR fllf[er defined n Eq. [5] is to. delay the tlme_domal.z_damped) complex sinusoids with a frequency located in tt
signal. This delay, which is a function of the frequency, 'stop band of the filter

specified by the group delay of the filter. Therefore, by using 2\f the model function of Eq. [1] is fitted to the filtered signal,

filter with a group delay equal to the filter length, practically N e estimated amplituc, and phas@, must be corrected as
information contained in the first high-energy samples of ﬂ}gllows :

original signal is lost by deleting the firsk — 1) samples of

y:. Assuming that the data have been collected long enough

such that theNl — 1) last signal samples contain mainly noise, a, = _ak

there is practically no loss of signal energy due to the fact that “ |hby|

these samples are shifted out of the time window. A filter with

a group delay equal to the filter length is in general not exactly o= Py — —1(

realizable, but for a given magnitude response of a filter a

maximum-phase filter has the largest possible group delay

(29). where real(.) and imag(.) denote the real and imaginary part
Such an FIR filter can be used as follows to eliminate peaks$, respectively. If, however, prior knowledge concerning th

in certain frequency regions. The influence of applying a filt@mplitudes and/or phases is to be imposed, the filter influen

on the exponentially damped sinusoids can be examined Byist be taken into account directly in the estimation proce

ficiently removed if they can be approximated by a sum ¢

imagﬁbk))

realhb,) (8]

applying Eqg. [6] to the signal model of Eq. [1]: and Eq. [2] must be modified to
M-1 N—M K
9:(n) = X hy(xy(n—m+M - 1) min > |y(n) — > hbx(n)|2 [9]
m=0 a ek akfk n=g k=1

+XMh-m+M-—-1 T
o ) The method that solves the above-stated minimization proble

+--Fx(n=m+ M —1)) is referred to as AMARESIn the following.
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o i ‘ , , signal is shown with an additional phase correction to con
a-ATP pensate for the influence of the filter.

In summary, by using a FIR filter it is possible to eliminate
peaks from the spectrum, including their frequency-domai
tails. The distortions introduced by the filter are known and ce
be taken into account in the model function. The use of
maximum-phase FIR filter ensures that the loss of informatiol
rich samples due to filtering is minimized. The following
paragraph provides additional information about the design a
the proper use of the maximum-phase FIR filters.

Design and use of the maximum-phase FIR filtéfhe
standard implementation of a maximum-phase FIR filter |
based on the technique 081) and proceeds as follows. A
linear-phase FIR filter is designed and transformed to a ma
50 0 ® g‘geq“my (pp;‘g} 0 o 20 imum-phase filter by rooting the filter polynomial and reflect

ing the zeros outside the unit circle followed by reconstructio
FIG. 1. In vivo *'P signal from perfused rat liver, acquired at 4.7 T (B the impulse response of the filter. To design the linear-pha

MHz). The real, zero-, and first-order phase-corrected parts of the spectrum are . .
shown. Peaks of the external standard (ES), phosphomonoesters (PME), iﬁggr’ the constrained Ieast-squares algorlthm proposeﬂZh (

ganic phosphate (R phosphodiesters (PDE), and theg, andy phosphorus  Was used. The parameters specifying the filter deSi_gn are |
of adenosine triphosphate (ATP) can be observedTP is taken as the filter orderM, cutoff frequencyf., stop-band suppression sup,

reference (0 ppm). and passband ripple In (24) this FIR filter method was used
for water signal suppression thl MRS. In the latter paper, an
tomatic filter design scheme was presented in which the or
rameter to be specified by the user is the approximate fi
ffuency of the peak of interest that lies closest to the wat

phased, real spectrum, the DFT transformed signal has topoeeak' The:{ |ct)roblem athand here is more o_hfﬂcu_lt st|rr]1ce the ;’S
corrected not only for the zero- and first-order phase but al@fy want {o Suppress one or more regions in the spectrt

for the frequency-dependent phase response of the filter. T@) )taining nuisance peaks. Therefore the design proposed
rl

is illustrated for anin vivo *'P signal of the perfused rat live was adapted in the following way:

acquired at 4.7 T (81 MHz). In Fig. 1 the real part of the 1. The user defines the filter cutoff frequenciesandfh,
original signal is displayed after zero- and first-order phasy selecting the frequency region(s) containing the nuisan
correction. In the left-hand side of Fig. 2 tBeATP signal has peaks, ffl,, fh,], r = 1,---, R, whereR is the number of
been extracted from the signal using the filter and phase ctrequency regions.

rected to zero and first order. In the right-hand side the filtered2. An estimates of the noise standard deviation is calcu-

The phase changes introduced by applying the FIR filter aldy
influence the visualization of the filtered signals. One soluti

" L L L I L . » L s L L L .
50 40 30 20 10 0 -10 -20 50 40 30 20 10 0 -10 -20
Frequency (ppm} Frequency (ppm)

FIG. 2. Real part of the maximum phase FIR-filter8® spectrum. Left: zero- and first-order phase corrected as in Fig. 1. Right: corrected for zero-
first-order phase as in Fig. 1 and for the frequency-dependent phase of the filter.



QUANTIFICATION OF BIOMEDICAL MR SPECTROSCOPY DATA 5

30 T T T T T T 30

N
®

281

™
&
T
N
3

N
P

1N
2

o
N
N
3
T

Group defay {in number of samples)

N
>
T

Group delay {in number of samples)
N
N

=
T

161

16 . . . . . . 14 . L ; . . .
50 40 30 20 10 0 -10 -20 50 40 30 20 10 0 -10 -20
Frequency (ppm) Frequency (ppm)

FIG. 3. Group delay of the maximum-phase FIR filter designed to extracBtA@P peaks of Fig. 1. Left: lower cutoff frequeney —1.43 ppm, upper
cutoff frequency= 31.9 ppm. Right: lower cutoff frequency —5.14 ppm, upper cutoff frequency 44.2 ppm.

lated as the standard deviation of the last samples of the sigoampared to the original filter design scheme. The advanta
y(n). The peak values,, is computed as the value of theis, however, that a suitable filter is found independent of tt
strongest nuisance peak, shape and signal energy of the nuisance peaks. Bgdof a

more detailed discussion on the computational complexi

S, = max’ Y(ﬂ) , associated with the design of the maximum-phase FIR filter
YN In (24), a maximum-phase filter is constructed that sur

wherev, € [fl,, fh,Jr = 1,---, R. presses the water signal down to the noise level while keepi
3. The initial filter suppression sup is taken equal to the stop band of the filter as narrow as possible based only

B the specification of the first peak of interest closest to the wat
sup= 2: peak. A narrow stop band is advisable since in general it lea
So to a higher group delay in the passband than a filter with t

and starting values for the filter order (e.ty1, = 30) and same (Ier.er,_”stotp-tt)agd s.upptrre]:ssmrr]ﬁ;nd passf)ar&d rlppbleaT
passband ripple (e.gr, = 5%) are chosen. principle is illustrated using the sa example describe

4. The linear-phase filter is designed and transformed intéigove (Fig. 1). First the automatic design scheme is appli
maximum-phase filter. with —1.43 ppm as a lower bound and 31.9 ppm as an upg

5. The signal is filtered and the maximum valsigin the bound for the region to be suppressed (Fig. 2). The group del

frequency regions of the nuisance peaks is calculated, of the resulting maximum phase filter of length 31 is shown i
the left-hand side of Fig. 3. The group delay of the filter witt

_ max‘ Yi(v)) —5.14 ppm and 44.2 ppm as lower and upper bounds, resp:
Sm \N ' tively, is shown in the right-hand side of the figure. Two effect
can be observed. First, the filter with the larger stop band h
wherev, € [fl,, fh,], r =1,---, R If

an overall smaller group delay in the passband and, second,
Sy > 25, peak closest to the filter lower bound is located in the transitic

band of the filter, leading to an even smaller group delay fc

the filter suppression (e.g., supsup/5) is increased and they,ig specific peak. The smaller group delay for the frequenci

process is restarted from 4. ¢, does not decrease in theyt jntarest will lead to an overall loss in SNR and a decrease
next iteration, the filter order is increased (ed..= M +

resulting parameter accuracy. This shows that care must
10). taken on how to specify the lower and upper bounds of tt
If the nuisance peaks are relatively narrow (slowly decayingggion(s) to be suppressed and it is therefore advisable
the above scheme results in a suitable filter in the first iterationspect the group delay of the filter in the passband in difficu
A higher filter suppression is required if some of the nuisanseenarios (large stop band and/or bound close to frequency
peaks have a fast decay. In this case the iterative procedure Wilerest). When choosing the bound closest to the region to
find a filter with a sufficient suppression within a few iterationsuppressed, it is important to make sure that no signal parts
(<10). The computational complexity is thereby increasdtie nuisance region have a frequency within the transition ba
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of the filter. Otherwise, the nuisance peaks would be insuffifrior to parameter estimation. This technique has already be
ciently suppressed, introducing bias in the parameters of intapplied for solvent suppression using various techniques
est. estimate the water signal. A black-box method often used
If the upper and lower bounds of the region(s) to be sughis context is the HSVD metho®(@). HSVD is a subspace-
pressed are chosen with some care, the nuisance peakshaggd parameter estimation method in which the noisy sigr
efficiently removed and the bias of the estimates is eliminatashace is subdivided into a “signal” and a “noise” subspac
This is accomplished with practically no loss of signal-to-noisgsing a SVD of a Hankel data matrig3). The signal subspace
ratio and with a low computational complexity. The influencg found by truncating the SVD of this matrix to rahk, the
of the choice of the upper and lower bounds in the filter desigiymber of exponentials that models the underlying signal.
scheme is further examined under Numerical Examples.  general HSVD provides a mathematical fit of the data by a su
_ ) o of exponentially damped complex-valued sinusoids. HSVI
Time-Domain Weighting: AMARES can therefore be used to approximate complicated features

The influence of nuisance peaks in NLLS parameter estinfR€ nuisance peaks. The signal corresponding to the fitt
tion techniques such as VARPRO and AMARES was studiégdions is subsequently subtracted from the original signal.
in (18). The bias term of the amplitude estimates, assuming!n this paper the following scheme is used to process spec
correct estimates of frequency and damping, was derived an@ith HSVD for FS estimation:
was seen that this term could be reduced by introducing an

appropriate weighting vector(n), in the NLLS fit: 1. The user specifies the model orddr and frequency
regions where the nuisance peaks have a frequency loca
N1 « [fl,,fh,], r =1, --, R, whereR is the number of frequency
min v(im)[y(n) — 2, x(n)]|% 10] "egions.
a0 ok fi E‘O| (mLy(n) E‘l (]l [10] 2. HSVD is used to model the original signal by a sunivbf

exponentially damped complex-valued sinusoids.
The choice of the weighting vector is a trade-off between 3. The modeled peaks lying within the user-defined regior

reducing the nuisance peaks influence and the loss of SNR. The used to reconstruct the nuisance peaks. Afterward

weighting vector should be matched with the frequency dig(_gconstructed nuisance signal is subtracted from the origir
tance, amplitude, and damping of the nuisance peaks to find fial. . . _ - .

optimal trade-off. This is, however, not feasible in practice and 4. The residual signal is quantified with AMARES.
instead a generic weighting vector is applied that is expected to _

work reasonably well in most scenarios. b8 a weighting The complete procedure is denoted as AMARES the fok

consisting of a quarter-wave sinusoid for the first (and last) yving. . . _
samples was recommended: A drawback of this method is the large computational con

plexity since it requires the computation of the SVD of the

N Hankel data matrix. Fast versions of this HSVD algorithm hav

sin(40> ne o, 19 b_een developed in which the computation of a full SVD i

circumvented; see3@, 35. The gain in efficiency of these fast

v(n) = 1 n€[20,N - 21] methods, however, decreases when the number of data po
sin((N —n- l”) ne[N—-20,N—1] decreases and/or the model order increa38s The choice of

40 model orderM in HSVD is not trivial in case the nearby

[11] nuisance peaks have an unknown or other than Lorentzi

) o ) ) model function. The choice of the correct model order i

Inserting the weighting function of Eq. [11] into Eq. [10] andmportant (and difficult) since undermodeling or overmodelin
solving it is referred to as AMARESIn the following. The ¢4, jead to a deterioration in parameter accuracy (8d).

method is expected to give good results for relatively wellyethods exist that make an automatic choice of model ord

separated peaks. However, the technique always leads t0 2 {0884 on various information criteria and on the domina

of SNR resulting in an increased variance of the parameg‘qlr]gmar values (see, e.g37) and reference therein). In this

estimates. These properties are illustrated under Nume”B%erthe minimum description length (MDL) criterion used ir

Examples. (37) is examined in the context of FS parameter estimatiol
The MDL criterion, however, requires the knowledge of all o
the singular values. Consequently, the entire SVD must |

Another approach to solve the problem of FS estimation is ¢alculated when the MDL criterion is used to estimate th
model the nuisance peaks by a black-box method and subtmactdel order and no fast methods such as those presentec
the reconstructed time-domain signal from the original signé34, 39 can be used.

HSVD Filter Method: AMARES
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Frequency-Domain Fitting: AMARESo estimation properties of the different methods as a function
the amplitude of the nuisance peaks and the frequency distal

FS estimation using frequency-domain model fitting is dork?etween the nuisance peaks and the peaks of interest. -

by minimizing the difference between the DFT transformeg rformance of AMARESIn case of a non-Lorentzian line

Qata and a '_’“Ode' function for the freque_ncy region(s) ﬁape is also examined. Thereafter the methods are evaluc
Interest. The influence from the_ other pe_aks in the SPECUUMLIS 16 relevant biomedical MRS examples. Unless otherwis
not Z€ro in the frequgnr_;y region(s) of mter_est and_must t% ecified the model function of Eq. [1] is used and the adde
taken into account. This is normally done by introducing extr mplex noise is circular, white, and Gaussian distributed. Tt

parameters to model the_ tails Qf the nuisance peaks. HereﬁR for each peak is expressed in decibels (dB) and defined
choose to use a polynomial basis function. The complete mode

function used to model the spectrum in the frequency region(s)
of interest is given by SNR peakk A 20 |O[\<ak),
g

« — el awtiznlhic ) NAY where o is the noise standard deviation. The quality of th

P

¥ = jex i p ) ; ) !

Yn) = 2 ae 1 — e(—exti2n(f—m)At +2 dpvf amplitude estimates is measured as the relative root me
p=0

k=t squared error (RRMSE) in percentages:
welfl,fh], r=1, - -R, [12]
) ) A
where P is the model order of the polynomiat|, are the RRMSE peakk = 100 ,
complex polynomial coefficients, andl[, fh,],r =1, ...,R

is (are) the frequency region(s) of interest. _ _ _ B
To obtain the parameters of interest, the minimization is nowhereL is the number of simulation runs and denotes the
only carried out over the frequency region(s) of interest inste&gtimate ofa, obtained in simulation rum. In the following

of over the entire frequency range as done in Eq. [4]: examples, the number of simulation runs is taken equal to 3C
The relative bias (RBias) in percentages

min > () = Y(w)?

L0k ok, i, dp ) r, fhr a
ak, ¢k, ak, fik,dp ;i[lTI ‘ff.1 ']R - A ay — [ 2|L:1 alk

Ke1... .. K. p=0,---P. [13] RBlaspeakk=100a—k

The minimization procedure of Eq. [13] is denoted bgnd the relative standard deviation (RSTD) in percentages
AMARES;g, in the following. The user must specify the

frequency range of the regions of interest and as a function o 1o 2
thereof the polynomial order must be chosen. In difficult cases A 1t <ak L 2 ak)
where the peaks of interest are not lying on a flat baseline the RSTD peakk = 100 L1 > a2

choice of the polynomial order is not trivial. If the polynomial =1 «

model order is chosen appropriately, i.e., if the polynomial is a
good model for the underlying baseline in the frequency regi@tie also used to express the theoretical expectations about
included, the estimation bias is expected to be low. The intrperformance of the methods. The RRMSE is compared to f
duction of these extra parameters to be estimated inevitabyative CrameRao lower bound (CRB). The CRB is calcu-
increases the variance of the parameter estimates. If the pd&fed from a model consisting of the peaks of interest only. Tt
nomial is not a good model for the baseline, bias is introduc€RB indicates the best possible accuracy of an estimasafpr
in the estimated parameters. The influence of the choice of th@biased estimator (see, e.B6)).
frequency region and the corresponding polynomial order are
further investigated under Numerical Examples. Note that Two-Peak Example
other choices of basis functions (e.g., (damped) sinusoids)y, s section we consider an example consisting of tw
might in some cases lead to a better modeling of the baseliggnsnentially damped sinusoids in which only one is of interes
The peak of interest (peakl) has the following parameter valus
NUMERICAL EXAMPLES
f, =20 Hz
The above methods are compared for three examples. First
an artificial two-peak example is constructed to examine the a; =10 Hz
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FIG. 4. Two-peak example: RRMSE, RSTD, and RBias of amplitude estimates of paaki 20, f, = 0.02kHz) as a function of the amplitude of the
nuisance peak (peak?2) for the frequency-domain fitting procedure AMARESSsing a polynomial baseline fit with different polynomial ordesSNR of
peakl= 10 dB. Left: RRMSE. Top right: RSTD. Bottom right: RBias. CRB denotes the theoretical lower bound.

¢, = 0 degrees respectively. The corresponding parameter accuracy of pee
(RRMSE, RSTD, RBias) with the amplitude of peak?2 fixed tc
a; =20 au 320 au is shown in Fig. 5 (fd? = 2) and Fig. 6 (forP = 4).

Results and discussion A higher polynomial order is re-
The damping and phase of the nuisance peak (peak?2) are figeited to achieve good estimates as the amplitude of pea

to increases (Fig. 4). It is seen that the bias almost vanishes if 1
polynomial order is chosen to be sufficiently high. The pric
a, =10 Hz for including additional polynomial parameters is an increase
standard deviation on the estimates.
¢, = 0 degrees, The standard deviation is overall lower fBr= 2 (Fig. 6),

but the bias is in general much larger than the biasfer 4

. . ig. 6), thereby confirming the result of Fig. 4. It can also b
whereas the amplitude and frequency of peak2 are varied. -Ié%%qerved that if the region of interest is small, the standa

Zir;pm? freqliﬁnf\x/ils p kHZif?nddttr?e gtlrlgber Cg ?naiﬁ po'irrlrgsﬁé_viation is higher since the number of points included in th
) ess otherwise specitied the use €s uoa|10timization problem is smaller. The polynomial of ordrer=

tions for peakl is equal to 10 dB. 2 is seen to be a bad model for the baseline for almost a
choice of the frequency region. The polynomial model of orde
P = 4 is a good approximation for most choices of the
frequency region but also breaks down when the frequen
Procedure. The purpose is to assess the influence of thegion becomes too large.
polynomial baseline fit on the accuracy of the parameters ofAs the amplitude of peak2 decreases, a lower polynomi
peakl estimated with AMARES:, Simulations were run order suffices to model the baseline and the results becon
with and without inclusion of a polynomial baseline. Theess sensitive to the frequency range included in Eq. [13].
amplitude of peak2 is varied between 10 and 320 au while its
frequency is fixed to 0.1 kHz. Polynomial orders varied fro - . I .
P = 0-5 and the frequency region included in Eq. [13] W;E’art B: Time-Domain FIR Filtering Using AMARES
—0.2 to 0.04 kHz. Procedure. The purpose is twofold: first to assess the
The RRMSE, RSTD, and RBias of the amplitude estimatésfluence of the value of the upper and lower bound of th
of peakl are shown as a function of the amplitude of peak?2 figion to be suppressed in the AMARERer design scheme
different polynomial orders in Fig. 4. and second to assess the performance of the method in case
To get an idea of the influence of the size of the frequencwisance peak does not have a Lorentzian lineshape.
region included in Eq. [13], the amplitude of peak2 is fixed and The amplitude of peak? is fixed to 320 au and the upper ai
the lower and upper bounds of the frequency interval are variledver bounds are varied between 0.11 and 0.5 kHz and 0.
between—0.5 and 0.01 kHz and between 0.03 and 0.09 kHand 0.09 kHz, respectively. The RMSE, RSTD, and RBias ¢

Part A: Frequency-Domain Baseline Fitting Using
AMARE $reo
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FIG. 5. Two-peak example: RMSE, RSTD, and RBias of the AMARESamplitude estimates of peakd,(= 20, f, = 0.02kHz) as a function of the
width of the frequency region included in Eq. [13]. The lowest frequency varies betw8énand 0.01 kHz and the highest frequency varies between 0.03 a
0.09 kHz. The polynomial order B = 2. The parameters of peak2 aag = 320,f, = 0.1 kHz. SNR of peak} 10 dB. Left: RRMSE. Top right: RSTD.
Bottom right: RBias.

the amplitude estimates of peakl are shown in Fig. 7 asaad f, varying between 0.06 and 0.22 kHz. Note that th
function of the bounds. Gaussian peaks have the same full width at half height and t

To test the performance of AMARE$ case the lineshape same maximum value of the real part of the DFT spectrum
is non-Lorentzian, an example is used consisting of two Gaussrentzian peaks with amplitudes of 20 and 320 au and dam
ian peaksX 7, ae M0zl e with ings of 10 Hz. The SNR of peakl is equal to 6.6 dB. The filte
design scheme is used with upper and lower bounds of t
region to be suppressed equal to the frequency of peak2 p
and minus 0.02 kHz, thereby fulfilling the basic principles a
explained under Design and Use of the Maximum-Phase F
Filter. Equation [9] was adapted to compensate for the filte
a, = 230/(y/m In 2)au influence in case of a Gaussian lineshape. The results :
displayed in Fig. 8.

Results and discussion.The bias is effectively removed for
¢1 = ¢, = 0 degrees almost all combinations of upper and lower bounds used in tl

f, = 20 Hz

a; = 20/(\m In 2)au

g, =g, = 10%(4 In 2)Hz?

RSTD Peak1 (%)
S ow @
=888

o
oo

r
IN]

1 (kHz) i, (kHz)
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5
8

~
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RBias Peak (%)
°
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[
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FIG. 6. Two-peak example: RMSE, RSTD, and RBias of the AMARESamplitude estimates of peakad,(= 20, f, = 0.02kHz) as a function of the
width of the frequency region included in Eq. [13]. The lowest frequency varies betwBeénand 0.01 kHz and the highest frequency varies between 0.03 a
0.09 kHz. The polynomial order B = 4. The parameters of peak2 aag = 320,f, = 0.1 kHz. SNR of peakZ} 10 dB. Left: RRMSE. Top right: RSTD.
Bottom right: RBias.
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FIG. 7. Two-peak example: RMSE, RSTD, and RBias of the AMARE®plitude estimates of peaka,(= 20, f, = 0.02kHz) as a function of the lower
and upper bounds in the filter design scheme. The parameters of peak2-arg@20,f, = 0.1 kHz. SNR of peak¥* 10 dB. Left: RRMSE. Top right: RSTD.
Bottom right: RBias.

filter design scheme (Fig. 7). The method breaks down whenThe frequency of peak?2 is varied between 0.06 and 0.22 ki
the upper and/or lower bound is chosen too close to thdile its amplitude is kept fixed at 320 au. The results ar
frequency of peak2, resulting in insufficient suppression of thisplayed in Fig. 9. For AMARESg., the polynomial order
nuisance peak. A slight increase in standard deviation canthat eliminates the bias and has the lowest standard deviatior
observed when the lower cutoff frequency is chosen closerghown for every frequency. The frequency region freid.15
the peak of interest. This is explained by the resulting lowéw 0.04 kHz is included in Eq. [13] for all frequencies of peak?
group delay for peakl leading to a loss of SNR and subdéewas verified that for the polynomial orders shown, the widtl
quently a higher standard deviation. of this frequency interval was not critical. For AMARE $he
AMARES; has no problems in dealing with the Gaussianpper and lower bounds in the filter design scheme are cho:s
nuisance peak (Fig. 8). The bias is removed and the RRM&E the frequency of peak2 plus and minus 0.02 kHz, there

follows the CR bound very closely. fulfilling the basic principles explained under Design and Us
_ of the Maximum-Phase FIR Filter. In AMARESthe model
Part C: Method Comparison order is taken equal to 2, the theoretical one.
Procedure. The accuracy of the four frequency-selective Results and discussionFor AMARES, a “breakdown”
estimation methods is compared. frequency is found below which the assumptions of a “large
7 T T r T T T 5.8
_ CRB
6.8 sL—A AMARES‘ B - 5.75[
g 5.6
Fe2p ~ ) ] ) ; ; -
% s 58,06 0.08 0.1 0.12 0.14 0.1 .18 012 0.‘22
& 6F | Frequency peak? (kHz)
T 58r B
56\‘\4‘ g o.&&—/’é‘\é—-———_émﬁ,é___ A
541 R é 0
521 LC,E*O.S*

\ . L . » . . . 1 . . L )
0.06 0.08 0.1 0.12 0.14 0.16 0.18 02 0.22 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Frequency peak? {kHz) Frequency peak2 (kHz)

FIG. 8. Two-peak example: RRMSE, RSTD, and RBias of the AMARE®plitude estimates of peaka,(= 13.6,f, = 0.02kHz) as a function of the
frequency of the nuisance peak (peali2,= 216.9). The twapeaks have a Gaussian lineshape. SNR of peal6lé dB. Left: RRMSE. Top right: RSTD.
Bottom right: RBias. CRB denotes the theoretical lower bound.
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FIG. 9. Two-peak example: RRMSE, RSTD, and RBias of the amplitude estimates of peakl 20, f, = 0.02kHz) as a function of the frequency of
the nuisance peak (peak®, = 320) fordifferent FS estimation procedures. SNR of peak10 dB. Left: RRMSE. Top right: RSTD. Bottom right: RBias.
CRB denotes the theoretical lower bound.

frequency separation no longer hold. The method is successfginal consisted of 15 Lorentzian peaks and no prior know
in eliminating the estimator bias outside this region, but thedge was imposed. The estimated parameters were then use
loss of SNR associated with this approach increases the staarameters for the noiseless simulation signal. The sampli
dard deviation of the estimates. AMAREKS, is capable of frequency is 10 kHz and the number of data points is 512. It
handling close nuisance peaks if the polynomial order is chipaportant to note that the region around 30 ppm was difficu
sen high enough. This is confirmed by the low estimator bia®. model correctly. In that region some signal features are st
The standard deviation is, however, increasing as a functiongrésent in the residual, while outside that frequency region tl
the polynomial order thereby degrading the estimates. Thesidual looks like white noise. In this case it is certainl
time-domain methods based on FIR filtering and HSVD filteadvantageous to use FS estimation, since no satisfactory mc
ing are clearly outperforming the other methods and thé# present for the entire signal.

RRMSEs are very close to the theoretical lower bounds evenThe accuracy of the four FS estimation methods is compar

for a small frequency separation. for the peak at 130 ppm for different noise levels. Fo
AMARES;¢¢,, different polynomial orders and widths of fre
Frequency-Selective Quantification quency regions were tested. The results obtained for differe

of in vivo ®*C Spectrum model orders in AMARES were compared and the perfor

. . . . . mance of the automatic order estimation scheme was exa

Procedure. A simulation study is performed using signals . .

. T 3 ined. In AMARES the influence of the choice of the upper anc
derived from anin vivo proton decoupled®C spectrum of

subcutaneous adipose tissue in the human forearm. The spl)s%vt\:'?r bounds in the filter design scheme was studied. Figure

trum was acquired at 4.7 T (50.3 MHz) using a 5-cm—diameterCL)J\;\'IStOrels’1u7ItS fﬁ: SMQSEEJES dV\gthu; t: 1%17 Iowrﬁr _?ﬁ:?:su
double-tuned surface coil. In some applications one is onfy! ppm, Upp q ppm.

interested in obtaining estimates of the two peaks around %%playgd fg rlAM,7A:I;E$ wer% gineratle6d7wnh Sl;pprAefASAonE‘g
and 130 ppm, respectively. The peak at 130 ppm correspo region below /7. ppm and above ppm. For R

to carbons in double bonds of mono- and polyunsaturated fal results were obtained for a model order of 15.
acid chains while the peak at 128 ppm corresponds exclusivelyResults and discussionin AMARESgxe, quantification of
to carbons in double bonds of polyunsaturated chains. THe *°C spectrum turned out to be impossible without inclusio
amplitudes of these peaks can be used to study noninvasivefiya polynomial. A polynomial order d? = 0 is only valid in
the relative amounts of poly- and monosaturation of fatty aciéssmall region around the two peaks of interest. A polynomi
in human tissue. The real, phased spectrum of the originalorder of P = 1 provides a bias close to zero in a large
vivo signal is displayed in the left-hand side of Fig. 10 whilérequency region: the lower bound can vary between 87 al
the real, phased spectrum of the FIR-filtered signal is shown dh7 ppm and the upper bound between 137 and 161 pp
the right-hand side. There is no significant change in standard deviation and RMS
The simulation signal was derived as follows. Tihevivo in this region. There is only a slight increase in RRMSE b
signal was quantified using AMARES. The model fitted to thesing a higher polynomial order. For AMAREShere are no
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significant differences between the results obtained for theo peaks of interest with AMARESThe filter design itself
theoretical model order and those determined by the automdtikes less thal s inthis case. Overall, FS estimation in this
model order selection criterion. The results are very insensitiggample reduces the computation time with a factor of 5.
to the choice of the lower and upper bounds in the filter design
scheme. Only if the bounds are chosen close to the peaks of
interest is there a degeneration in the results. As seen in Fig.
11, the results for both AMARESand AMARES, are very
close to the theoretical CR bound. Since the peaks of interesProcedure. The simulation study in this section is based ol
are well separated from the other peaks in the spectrum, thsignal derived from aim vivo *'P signal of the perfused rat
other methods perform only slightly worse, as expected. Ndteer, acquired at 4.7 T (81 MHz), displayed in the left-hanc
also that all methods are able to remove the bias and that side of Fig. 1. The3-ATP signal is used for the quantification
RSTD contributes most to the RRMSE. of the ATP concentration, since, unlike the other ATP signal
FS estimation in this case also leads to a reduction iinis essentially free from underlying contributions from othe
calculation time. Quantifying all 15 peaks of the spectrum wittow-concentration molecules. Therefore, in some applicatior
AMARES takes about 7.6 s, while it takes 0.6 s to analyze thteis interesting to extract only the parameters of & TP

Frequency-Selective Quantification
of in vivo *'P Spectrum

T

CRB
AMARES,
AMARES,
AMARES,,

AMARESFREO

RRMSE peak at 130 ppm (%)

w IS o
T 1

RSTD peak at 130 ppm (%)
o
T

s L .

L L
16 18 20

2 4 26 28 30
SNR peak at 130 ppm (dB)

L L L

05 . . . L \
14 16 18 20 22 24
SNR peak at 130 ppm (dB)

L
26

L
28

30

. L
16 18 20

. ;
22 24 26 28 30
SNR peak at 130 ppm (dB)

FIG.11. RRMSE, RSTD, and RBias of amplitude estimates of the peak located at 130 ppm in the siff@atpeectrum derived from Fig. 10 for different
SNRs using different FS estimation methods. The polynomial dPdesed in AMARESkg is 1 for all SNR levels. Left: RRMSE. Top right: RSTD. Bottom

right: RBias. CRB denotes the theoretical lower bound.
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FIG. 12. RMSE of the amplitude estimate BfATP in case their concentration has dropped to 20% of their original value. Left: a function of the freque
region included in Eq. [13] (AMARES:o). The results are displayed fBr= 1. Right: a function of the choice of the lower and upper bounds in the filter desi
scheme (AMARES.

triplet. In Fig. 2, how the triplet can be extracted using ththe choice of the model order in AMARESNd the automatic
FIR-filter method is illustrated. order selection method were investigated and the results of tl
To derive the parameters of the simulation signaljthévo analysis are shown in Fig. 13 for tfATP peaks. In Fig. 14
signal was quantified using AMARES. A Lorentzian lineshapée 4 FS parameter estimation methods are compared. T
was used and the first data points were excluded from the fitrtsults of AMARESgeo corresponding t& = 1 are shown. A
reduce the influence of the broad contribution. The followingwer bound of—2.5 ppm and an upper bound of 33.2 ppn

prior knowledge was imposed: were used in AMARES The model order in AMARES is
1. amplitude ratios: 1/1 in doublets af andy-ATP, 1/2/1 €dual to 11, the theoretical model order.

in B-ATP triplet; Results and discussionA polynomial order ofP = 1 is
2. frequency splittings of 16 Hz within the multiplets; needed to get reasonable results—low bias and standard d¢
3. dampings of all ATP peaks equal; ation—for AMARESe, (Fig. 12). The choice of the region
4. phases of all peaks equal. included in Eq. [13] is in this case important since the model |

The noise level in the simulations is similar to the one inithe only valid in a rather small frequency region. Higher polyno

vivo signal. In all four compared methods the dampings aﬁH'a! C?fders’ however, Iegd to a large increase in standq
phases of the thre-ATP peaks were constrained to be equéjewatmn, thereby worsening t-he results even more. Thg chol
and an amplitude ratio of 1/2/1 and frequency splittings of 1 'ower and upper bound in the AMARESilter design
Hz were imposed. The sampling frequency is 5 kHz and ti§gheme is not crmcal. iny if the lower bou.nd is chosen cllos
number of data points is 128. The amplitude of the ATP peal&t_he peaks of interest is there a degradation of the amplitu
was varied from 20 to 100% of the originally derived valueeStimates. _

These variations correspond to changes typically encounterefro” AMARES, the choice of the model order has a stron
in in vivo P signals. The accuracy of the FS methods [gfluence on the accuracy of amplitude estimates of3#er P
compared. Different polynomial orderB (= 0-5) andwidths P&aks (Fig. 13). Slight undermodelinil (= 8) gives the same
of frequency regions were tested for AMARES, The upper results as using the correct model order. Overmodeling, on t
bound of the frequency region included in Eq. [13] was variether hand, leads to much worse results. A similar phenomen
between—5.88 and—2.5 ppm and the lower bound betweer®ccurs when HSVD is used to model the water pez& (n
—17.5 and—11.3 ppm. The influence of the specified uppe?roton spectra. A wrong choice of model order in that appl
and lower bounds in the filter design scheme was tested. T¢@$ion also leads to a deterioration of parameter accuracy. T
lower bound of the frequency region to be suppressed Wd®L criterion for automatic order estimation works very well
varied between-5.88 ppm and-2.5 ppm and the upper boundfor ATP values between 40 and 100% of the original value, b
between 33.2 ppm and 44.2 ppm. The sensitivity of tH@eaks down for values below 20%, i.e., in low SNR cases.
RRMSE of theB-ATP peaks w.r.t. the choice of these param- The results for AMARES and AMARES are very similar
eters in AMARESgeo and AMARES is shown in Fig. 12The if the right model order is chosen in AMARESFig. 14).
results are displayed for the lowest ATP value and IAMARES, and AMARESke, perform worse for all ATP
AMARESgxg the polynomial order i® = 1. The influence of amplitudes. Again the bias is effectively removed for al
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FIG. 13. RRMSE, RSTD, and RBias of the estimates of the amplitudes otA&P peaks for different choices of model orddi) in AMARES,. AUT
denotes the results obtained by the automatic model order selection criterion. The results are obtained for ATP amplitudes ranging betweet 20 tred 1C
maximum value. The corresponding SNR of the two outer peaks in the triplet varies linearly betwesm 10 dB. CRB denotes the theoretical lower bound

methods but the standard deviation of AMARESnd filter approach still leads to a slight reduction in calculatiol
AMARESggg, is higher. time.

The gain in calculation time in this particular example is less
pronounced than in théC example. In thé*C example 2 of 15
peaks are quantified. Since no prior knowledge is used in the CONCLUSIONS
¥C example, AMARES$ minimizes a cost function with 8
variables while AMARES used on the entire signal minimizes In this paper frequency-selective quantification of biomed
a cost function with 60 variables. In this particular exampleal MRS data is studied. The influence of nuisance peaks is
since we impose a lot of prior knowledge, the number a@host cases not negligible and must be taken care of prior
variables to be fitted by AMARES used on the entire signal grameter estimation. A number of methods that can be usec
20, compared to 8 variables for AMARESQuantifying the combination with time-domain or frequency-domain model
entire spectrum using AMARES takes about 1.5 s, while anfitting procedures are revisited: time-domain weighting, HSVI
lyzing the B-ATP region only with AMARES takes 0.3 s. The filtering, fitting in the frequency domain using a polynomial
filter design in this case also took less than 1 s. Overall, the Fitiaseline. A new method based on maximum-phase FIR filte

30 T T T T T T T 30

—_— CRB
G——©  AMARES,
25 a——A  AMARES,
F——*  AMARES,
—x AMARES,

FREQ

L L " 1 s L L
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RBias B-ATP (%)
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70 80 9% 100 20 30 40 50 60 70 80 90 100
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FIG.14. RRMSE, RSTD, and RBias of the estimates of the amplitudes g3tA&P peaks for four different FS estimation methods. The results are obtain
for ATP amplitudes ranging between 20 and 100% of the maximum value. The corresponding SNR of the two outer peaks in the triplet varies linearly |
—4 and 10 dB. The polynomial order used in AMARES, is 1 for all B-ATP amplitudes. Left: RRMSE. Top right: RSTD. Bottom right: RBias. CRB denote
the theoretical lower bound.
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